Синхронный и асинхронный двигатель

Синхронный и асинхронный двигатель

Синхронный и асинхронный двигатель

Электрогенератор или альтернатор, как его часто называют специалисты, преобразует механическую энергию вращения вала двигателя в электрическую энергию переменного тока. В электростанциях используются синхронные и асинхронные двигатели. В зависимости от типа двигателя и конструкции электростанции лучше подходит для решения тех или иных задач.

Для возбуждения ЭДС (электродвижущей силы) в обмотках статора (неподвижная часть генератора) нужно создать переменное магнитное поле. Это достигается вращением намагниченного ротора (другое его название - якорь). Для "намагничивания" используют разные примеры.

Синхронный генератор

У синхронного генератора на якоре имеются обмотки, на которые подается электрический ток. Изменяя его величину, можно влиять на магнитное поле, а следовательно, и на напряжение на выходе статорных обмоток. Роль регулятора прекрасно исполняет простейшая электрическая схема с обратной связью по току и напряжению. Благодаря этому способность синхронного альтернатора "проглатывать" кратковременные перегрузки высока и ограничена лишь омическим (активным) сопротивлением его обмоток, т.е. легче переносят пусковые нагрузки.

Однако у такой схемы есть и недостатки. Прежде всего, ток приходится подавать на вращающийся ротор, для чего традиционно используют щеточный узел. Работая с довольно большими (особенно во время перегрузок) токами, щетки перегреваются и частично "выгорают". Это приводит к плохому их прилеганию к коллектору, к повышению омического сопротивления и к дальнейшему перегреву узла. Кроме того, подвижный контакт неизбежно искрит, а значит, становиться источником радиопомех. И самый основной недостаток низкая степень защиты от внешних воздействий таких как: пыль, грязь, вода, т.к. синхронный генератор охлаждается "протягивая" через себя воздух, соответственно все что находится в воздухе может попадать в генератор.

Если генератор щёточный, чтобы избежать преждевременного износа, рекомендуется время от времени контролировать состояние щеточного узла и при необходимости очищать либо менять щетки. Кстати, после их заменены, желательно дать им время "приработаться" к коллектору, а уж за тем нагружать станцию "по полной программе".

Многие современные синхронные генераторы снабжены безщеточными системами возбуждения тока на катушках ротора (их еще называют brash-less). Они лишены вышеуказанных недостатков связанных с щёточным узлом, а потому предпочтительнее.

Для трёхфазных синхронных генераторов допустимый перекос фаз 33%

Коэффициент нелинейных искажений 13-25% (в зависимости от производителя)

Асинхронный генератор

Асинхронный генератор вообще не имеет обмоток на роторе. Для возбуждения ЭДС в его выходной цепи используют остаточную намагниченность якоря. Конструктивно такой альтернатор намного проще, надежнее и долговечнее. Кроме того, поскольку обмотки ротора охлаждать не нужно (их просто нет), корпус асинхронного генератора полностью закрыт, что позволяет исключить попадание пыли и влаги. Асинхронные альтернаторы не восприимчивы к коротким замыканиям, поэтому лучше подходят для питания сварочных аппаратов.

К сожалению у асинхронников тоже есть недостатки, например способность "проглатывать" пусковые перегрузки у них ниже, чем у синхронных генераторов. Но этот недостаток решается путем оснащения станций системой "стартового усиления". (см. выше). Как правило все профессиональные асинхронные генераторы оснащены системой стартового усиления. 

Для трёхфазных асинхронных генераторов допустимый перекос фаз 60-70% 

Коэффициент нелинейных искажений 2-10% (в зависимости от производителя)

К списку статей